14 research outputs found

    Enhancing the USDA FAS Crop Forecasting System Using SMAP L3 Soil Moisture Observations

    Get PDF
    One of the U.S. Department of Agriculture-Foreign Agricultural Services (USDA-FAS) mission objectives is to provide current information on global crop supply and demand estimates. Crop growth and development is especially susceptible to the amount of water present in the root-zone portion of the soil profile. Therefore, accurate knowledge of the root-zone soil moisture (RZSM) is an essential for USDA-FAS global crop assessments. This paper focusses on the possibility of enhancing the USDA-FAS's RZSM estimates through the integration of passive-based soil moisture observations derived from the Soil Moisture Active Passive (SMAP) mission into the USDA-FAS Palmer model. Lag-correlation analysis, which explores the agreement between changes in RZSM and crop status indicated that the satellite-based observations can enhance the model-only estimates

    Examining Rapid Onset Drought Development Using the Thermal Infrared–Based Evaporative Stress Index

    Get PDF
    Reliable indicators of rapid drought onset can help to improve the effectiveness of drought early warning systems. In this study, the evaporative stress index (ESI), which uses remotely sensed thermal infrared imagery to estimate evapotranspiration (ET), is compared to drought classifications in the U.S. Drought Monitor (USDM) and standard precipitation-based drought indicators for several cases of rapid drought development that have occurred across the United States in recent years. Analysis of meteorological time series from the North American Regional Reanalysis indicates that these events are typically characterized by warm air temperature and low cloud cover anomalies, often with high winds and dewpoint depressions that serve to hasten evaporative depletion of soil moisture reserves. Standardized change anomalies depicting the rate at which various multiweek ESI composites changed over different time intervals are computed to more easily identify areas experiencing rapid changes in ET. Overall, the results demonstrate that ESI change anomalies can provide early warning of incipient drought impacts on agricultural systems, as indicated in crop condition reports collected by the National Agricultural Statistics Service. In each case examined, large negative change anomalies indicative of rapidly drying conditions were either coincident with the introduction of drought in the USDM or lead the USDM drought depiction by several weeks, depending on which ESI composite and time-differencing interval was used. Incorporation of the ESI as a data layer used in the construction of the USDM may improve timely depictions of moisture conditions and vegetation stress associated with flash drought events

    Hydrologic and Agricultural Earth Observations and Modeling for the Water-Food Nexus

    Get PDF
    In a globalizing and rapidly-developing world, reliable, sustainable access to water and food are inextricably linked to each other and basic human rights. Achieving security and sustainability in both requires recognition of these linkages, as well as continued innovations in both science and policy. We present case studies of how Earth observations are being used in applications at the nexus of water and food security: crop monitoring in support of G20 global market assessments, water stress early warning for USAID, soil moisture monitoring for USDA's Foreign Agricultural Service, and identifying food security vulnerabilities for climate change assessments for the UN and the UK international development agency. These case studies demonstrate that Earth observations are essential for providing the data and scalability to monitor relevant indicators across space and time, as well as understanding agriculture, the hydrological cycle, and the water-food nexus. The described projects follow the guidelines for co-developing useable knowledge for sustainable development policy. We show how working closely with stakeholders is essential for transforming NASA Earth observations into accurate, timely, and relevant information for water-food nexus decision support. We conclude with recommendations for continued efforts in using Earth observations for addressing the water-food nexus and the need to incorporate the role of energy for improved food and water security assessment

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    Leveraging the Google Earth Engine for Drought Assessment Using Global Soil Moisture Data

    No full text
    Soil moisture is considered to be a key variable to assess crop and drought conditions. However, readily available soil moisture datasets developed for monitoring agricultural drought conditions are uncommon. The aim of this work is to examine two global soil moisture datasets and a set of soil moisture web-based processing tools developed to demonstrate the value of the soil moisture data for drought monitoring and crop forecasting using the Google Earth Engine (GEE). The two global soil moisture datasets discussed in the paper are generated by integrating the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions’ satellite-derived observations into a modified two-layer Palmer model using a one-dimensional (1D) ensemble Kalman filter (EnKF) data assimilation approach. The web-based tools are designed to explore soil moisture variability as a function of land cover change and to easily estimate drought characteristics such as drought duration and intensity using soil moisture anomalies and to intercompare them against alternative drought indicators. To demonstrate the utility of these tools for agricultural drought monitoring, the soil moisture products and vegetation- and precipitation-based products were assessed over drought-prone regions in South Africa and Ethiopia. Overall, the 3-month scale Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) showed higher agreement with the root zone soil moisture anomalies. Soil moisture anomalies exhibited lower drought duration, but higher intensity compared with SPIs. Inclusion of the global soil moisture data into the GEE data catalog and the development of the web-based tools described in the paper enable a vast diversity of users to quickly and easily assess the impact of drought and improve planning related to drought risk assessment and early warning. The GEE also improves the accessibility and usability of the earth observation data and related tools by making them available to a wide range of researchers and the public. In particular, the cloud-based nature of the GEE is useful for providing access to the soil moisture data and scripts to users in developing countries that lack adequate observational soil moisture data or the necessary computational resources required to develop them

    Exploring Spatiotemporal Relations between Soil Moisture, Precipitation, and Streamflow for a Large Set of Watersheds Using Google Earth Engine

    No full text
    An understanding of streamflow variability and its response to changes in climate conditions is essential for water resource planning and management practices that will help to mitigate the impacts of extreme events such as floods and droughts on agriculture and other human activities. This study investigated the relationship between precipitation, soil moisture, and streamflow over a wide range of watersheds across the United States using Google Earth Engine (GEE). The correlation analyses disclosed a strong association between precipitation, soil moisture, and streamflow, however, soil moisture was found to have a higher correlation with the streamflow relative to precipitation. Results indicated different strength of the association depends on the watershed classes and lag times assessments. The perennial watersheds showed higher coherence compared to intermittent watersheds. Previous month precipitation and soil moisture have a stronger influence on the current month streamflow, particularly in the snow-dominated watersheds. Monthly streamflow forecasting models were developed using an autoregressive integrated moving average (ARIMA) and support vector machine (SVM). The results showed that the SVM model generally performed better than the ARIMA model. Overall streamflow forecasting model performance varied considerably among watershed classes, and perennial watersheds tend to exhibit better predictably compared to intermittent watersheds due to lower streamflow variability. The SVM models with precipitation and streamflow inputs performed better than those with streamflow input only. Results indicated that the inclusion of antecedent root-zone soil moisture improved the streamflow forecasting in most of the watersheds, and the largest improvements occurred in the intermittent watersheds. In conclusion, this work demonstrated that knowing the relationship between precipitation, soil moisture, and streamflow in different watershed classes will enhance the understanding of the hydrologic process and can be effectively utilized in improving streamflow forecasting for better satellite-based water resource management strategies

    Leveraging Google Earth Engine for Drought Assessment Using Global Soil Moisture Data

    No full text
    Soil moisture is considered to be a key variable to assess crop and drought conditions. However, readily available soil moisture datasets developed for monitoring agricultural drought conditions are uncommon. The aim of this work is to examine two global soil moisture datasets and a set of soil moisture web-based processing tools developed to demonstrate the value of the soil moisture data for drought monitoring and crop forecasting using the Google Earth Engine (GEE). The two global soil moisture datasets discussed in the paper are generated by integrating the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions' satellite-derived observations into a modified two-layer Palmer model using a one-dimensional (1D) ensemble Kalman filter (EnKF) data assimilation approach. The web-based tools are designed to explore soil moisture variability as a function of land cover change and to easily estimate drought characteristics such as drought duration and intensity using soil moisture anomalies and to intercompare them against alternative drought indicators. To demonstrate the utility of these tools for agricultural drought monitoring, the soil moisture products and vegetation- and precipitation-based products were assessed over drought-prone regions in South Africa and Ethiopia. Overall, the 3-month scale Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) showed higher agreement with the root zone soil moisture anomalies. Soil moisture anomalies exhibited lower drought duration, but higher intensity compared with SPIs. Inclusion of the global soil moisture data into the GEE data catalog and the development of the web-based tools described in the paper enable a vast diversity of users to quickly and easily assess the impact of drought and improve planning related to drought risk assessment and early warning. The GEE also improves the accessibility and usability of the earth observation data and related tools by making them available to a wide range of researchers and the public. In particular, the cloud-based nature of the GEE is useful for providing access to the soil moisture data and scripts to users in developing countries that lack adequate observational soil moisture data or the necessary computational resources required to develop them

    Initial assessment of in situ based soil moisture observations over Turkey

    No full text
    Many hydrological applications are linked with water and energy balance equations. Given soil moisture is a common variable in both water and energy balance equations, it plays a critical role in many hydrological, atmospheric, and agricultural applications, like flood-, climate change-, land/atmosphere-, crop water requirement-related studies. This variable can be obtained using multiple platforms, like ground-based stations, remote sensing, and hydrological models. Among them station-based soil moisture observations arguably have the greatest role in estimating the true soil moisture values or the error characterization of remotely sensing- or hydrological model simulation-based values, even though station-based observations suffer from the sparsely located stations. Soil moisture has been observed in Turkey since 2007 over 149 stations, while the quality control of these stations have not been done before. In this study observed time-series have been quality controlled for their response to precipitation events and calibrated against the soil type and temperature of the soil medium. This study was supported by TUBITAK fund (#114Y676)
    corecore